Finance, Markets and Valuation Vol. 4, Num. 1 (Enero-Junio 2018), 41–57
con un grado de precisión elevado el comportamiento del deterioro de las excavadoras de
ruedas asociado únicamente al paso del tiempo.
Referencias
Arlot, S., y Celisse, A. (2010). A survey of cross-validation procedures for model selection.
Statistics Sur veys, 4(0), 40–79. doi: https://doi.org/10.1214/09-ss054
Astorga Gómez, J. M. (2014). Aplicación de modelos de regresión lineal para determinar las
armónicas de tensión y corriente; application of linear regression models to determine
the current and voltage harmonics. Ingeniería Energética, 35(3), 234–241.
Cousineau, D., y Chartier, S. (2010). Outliers detection and treatment: a re-
view. International Journal of Psychological Research, 3(1), 58–67. doi:
https://doi.org/10.21500/20112084.844
Cross, T. L., y Perry, G. M. (1995). Depreciation patterns for agricultural machinery. American
Journal of Agricultural Economics, 77(1), 194–204. doi: https://doi.org/10.2307/1243901
Fenollosa, L., y Guadalajara Olmeda, N. (2007). An empirical depreciation model for agricultural
tractors in spain. Spanish journal of Agricultural Research(2), 130–141.
Guadalajara-Olmeda, N., y Fenollosa-Ribera, M. L. (2010). Modelos de valoración de maquinaria
agrícola en el sur de europa. un análisis de la depreciación real. Agrociencia, 44(3), 381–
391.
Guerschman, J. P., Scarth, P. F., McVicar, T. R., Renzullo, L. J., Malthus, T. J., Stewart, J. B.,
... Tre vithick, R. (2015). Assessing the eects of site heterogeneity and soil properties
when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil
fractions from landsat and MODIS data. Remote Sensing of Environment, 161, 12–26. doi:
https://doi.org/10.1016/j.rse.2015.01.021
Hansen, L., y Lee, H. (1991). Estimating farm tractor depreciation: Tax implications. Canadian
Journal of Agricultural Economics/Revue canadienne d
'
agroeconomie, 39(3), 463–479. doi:
https://doi.org/10.1111/j.1744-7976.1991.tb03587.x
Hastie, T., Tibshirani, R., y Friedman, J. (2009). The elements of statistical learning: data mining,
inference, and prediction. Springer Science & Business Media.
Hawkins, D. M., Basak, S. C., y Mills, D. (2003). Assessing model fit by cross-validation.
Journal of Chemical Information and Computer Sciences, 43(2), 579–586. doi:
https://doi.org/10.1021/ci025626i
Kozak, A., y Kozak, R. (2003). Does cross validation provide additional information in the
evaluation of regression models? Canadian Journal of Forest Research, 33(6), 976–987.
doi: https://doi.org/10.1139/x03-022
Leatham, D. J., y Baker, T. G. (1981). Empirical estimates of the eects of inflation on salvage
values, cost and optimal replacement of tractors and combines. North Central Journal of
Agricultural Economics, 3(2), 109. doi: https://doi.org/10.2307/1349124
Leys, C., Ley, C., Klein, O., Bernard, P., y Licata, L. (2013). Detecting outliers: Do not use standard
deviation around the mean, use absolute deviation around the median. Journal of Experi-
mental Social Psychology, 49(4), 764–766. doi: https://doi.org/10.1016/j.jesp.2013.03.013
McNeill, R. C. (1979). Depreciation of farm tractors in british columbia. Canadian Jour-
nal of Agricultural Economics/Revue canadienne d
'
agroeconomie, 27(1), 53–58. doi:
https://doi.org/10.1111/j.1744-7976.1979.tb02928.x
Peacock, D. L., y Brake, J. R. (1970). What is used farm machinery worth? Michigan State
University, Agricultural Experiment Station.
David Postiguillo y cols. 56