Finance, Markets and Valuation Vol. 4, Num. 1 (Enero-Junio 2018), 59–66
Dutta, A., Bandopadhyay, G., y Sengupta, S. (2012). Prediction of stock performance in indian
stock market using logistic regression. International Journal of Business and Information,
7(1), 105–136.
García, F., Guijarro, F., y Oliver, J. (2017). Index tracking optimization with cardinality constraint:
a performance comparison of genetic algorithms and tabu search heuristics. Neural
Computing and Applications, 30(8), 2625–2641. doi: https://doi.org/10.1007/s00521-017-
2882-2
Hsu, C.-W., Chang, C.-C., y Lin, C.-J. (2003). A practical guide to support vector classification (Inf.
Téc.). National Taiwan University.
Huang, C., Yang, D., y Chuang, Y. (2008). Application of wrapper approach and composite
classifier to the stock trend prediction. Expert Systems with Applications, 34(4), 2870–2878.
doi: https://doi.org/10.1016/j.eswa.2007.05.035
Huang, W., Nakamori, Y., y Wang, S.-Y. (2005). Forecasting stock market movement direction
with support vector machine. Computers & Operations Research, 32(10), 2513–2522. doi:
https://doi.org/10.1016/j.cor.2004.03.016
jae Kim, K. (2003). Financial time series forecasting using support vector machines. Neurocom-
puting, 55(1-2), 307–319. doi: https://doi.org/10.1016/s0925-2312(03)00372-2
Jiang, T., Wang, S., y Wei, R. (2007). Support vector machine with composite kernels for time
series prediction. En Advances in neural networks – ISNN 2007 (pp. 350–356). Springer
Berlin Heidelberg. doi: https://doi.org/10.1007/978-3-540-72395-0_45
Kara, Y., Boyacioglu, M. A., y Ömer Kaan Baykan. (2011). Predicting direction of stock price index
movement using artificial neural networks and support vector machines: The sample
of the istanbul stock exchange. Expert Systems with Applications, 38(5), 5311–5319. doi:
https://doi.org/10.1016/j.eswa.2010.10.027
Kumar, D., Meghwani, S. S., y Thakur, M. (2016). Proximal support vector machine based hybrid
prediction models for trend forecasting in financial markets. Journal of Computational
Science, 17, 1–13. doi: https://doi.org/10.1016/j.jocs.2016.07.006
Moghaddam, A. H., Moghaddam, M. H., y Esfandyari, M. (2016). Stock market index prediction
using artificial neural network. Journal of Economics, Finance and Administrative Science,
21(41), 89–93. doi: https://doi.org/10.1016/j.jefas.2016.07.002
Oliver, J. (2016). Modelling conditional volatility in the spanish ibex-35 stock index using
high frequency data. a comparison of the egarch model and the backpropagation neural
network. Finance, Markets and Valuation, 2(2), 21–37.
Oztekin, A., Kizilaslan, R., Freund, S., y Iseri, A. (2016). A data analytic approach to forecasting
daily stock returns in an emerging market. European Journal of Operational Research,
253(3), 697–710. doi: https://doi.org/10.1016/j.ejor.2016.02.056
Patel, J., Shah, S., Thakkar, P., y Kotecha, K. (2015). Predicting stock market index using fusion
of machine learning techniques. Expert Systems with Applications, 42(4), 2162–2172. doi:
https://doi.org/10.1016/j.eswa.2014.10.031
Qiu, M., y Song, Y. (2016). Predicting the direction of stock market index movement
using an optimized artificial neural network model. PLOS ONE, 11(5), e0155133. doi:
https://doi.org/10.1371/journal.pone.0155133
Rumelhart, D. E., Hinton, G. E., y Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533–536. doi: https://doi.org/10.1038/323533a0
Smola, A. J., y Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and
Computing, 14(3), 199–222. doi: https://doi.org/10.1023/b:stco.0000035301.49549.88
Javier Oliver 65