Finance, Markets and Valuation Vol. 5, Num. 2 (Julio-Diciembre 2019), 91–113
Arribas, I., Espinós-Vañó, M., García, F., y Morales-Bañuelos, P. (2019). The inclusion of socially
irresponsible companies in sustainable stock indices. Sustainability, 11(7), 2047. doi:
https://doi.org/10.3390/su11072047
Baetje, F., y Menkho, L. (2016). Equity premium prediction: Are economic and techni-
cal indicators unstable? International Journal of Forecasting, 32(4), 1193–1207. doi:
https://doi.org/10.1016/j.ijforecast.2016.02.006
Ballings, M., den Poel, D. V., Hespeels, N., y Gryp, R. (2015). Evaluating multiple classifiers for
stock price direction prediction. Expert Systems with Applications, 42(20), 7046–7056. doi:
https://doi.org/10.1016/j.eswa.2015.05.013
Boz, G., Plans, C. M., Guerrero, N. O., y Jiménez, D. P. (2015). ¿Influyen las normas internacionales
de información financiera en el riesgo de las acciones? Contaduría y Administración, 60(3),
556–577. doi: https://doi.org/10.1016/j.cya.2015.05.010
Castro, J. A. M. (2016). Factores que influyen en las acciones sustentables de la bolsa mexicana
de valores. Escritos Contables y de Administración, 7(1), 15–47.
Cervelló-Royo, R., Guijarro, F., y Michniuk, K. (2015). Stock market trading rule
based on pattern recognition and technical analysis: Forecasting the DJIA index
with intraday data. Expert Systems with Applications, 42(14), 5963–5975. doi:
https://doi.org/10.1016/j.eswa.2015.03.017
Cuta Durán, C. (2017). Identificación de señales en los precios de las acciones del mercado
colombano, con el uso de medias móviles y osciladores. Finance, Markets and Valuation,
3(1), 49–82.
Dash, R., Dash, P., y Bisoi, R. (2014). A self adaptive dierential harmony search based optimized
extreme learning machine for financial time series prediction. Swarm and Evolutionary
Computation, 19, 25–42. doi: https://doi.org/10.1016/j.swevo.2014.07.003
de Oliveira, F. A., Nobre, C. N., y Zárate, L. E. (2013). Applying artificial neural networks to
prediction of stock price and improvement of the directional prediction index – case
study of PETR4, Petrobras, Brazil. Expert Systems with Applications, 40(18), 7596–7606.
doi: https://doi.org/10.1016/j.eswa.2013.06.071
Dincer, H., Hacioglu, U., Tatoglu, E., y Delen, D. (2016). A fuzzy-hybrid analytic model to assess
investors
'
perceptions for industry selection. Decision Support Systems, 86, 24–34. doi:
https://doi.org/10.1016/j.dss.2016.03.005
Eiamkanitchat, N., Moontuy, T., y Ramingwong, S. (2016). Fundamental analysis and technical
analysis integrated system for stock filtration. Cluster Computing, 20(1), 883–894. doi:
https://doi.org/10.1007/s10586-016-0694-2
Elze, G. (2010). Value investing anomalies in the european stock market: Multiple value,
consistent earner, and recognized value. The Quarterly Review of Economics and Finance,
50(4), 527–537. doi: https://doi.org/10.1016/j.qref.2010.06.005
Erkan, A., Fainshmidt, S., y Judge, W. Q. (2016). Variance decomposition of the country, industry,
firm, and firm-year eects on dividend policy. International Business Review, 25(6), 1309–
1320. doi: https://doi.org/10.1016/j.ibusrev.2016.04.003
Fama, E. F. (1995). Random walks in stock market prices. Financial analysts journal, 51(1), 75–80.
Fernández, P., Carabias, J. M., y de Miguel, L. (2007). Rentabilidad de los fondos de inversión en
España. 1991-2006..
Fong, W. M. (2015). A profitable dividend yield strategy for retirement portfolios. The Journal of
Retirement, 3(3), 51–61. doi: https://doi.org/10.3905/jor.2016.3.3.051
Fraire, L. A., Valdés, A. L., y Vázquez, R. D. (2017). Influencia macroeconómica y contable en los
Raul Barberá Beltrán 111