Finance, Markets and Valuation Vol. 6, Num. 1 (January-June 2020), 37–49
social, and governance rating of firms by using corporate financial performance variables:
A rough set approach. Sustainability, 12(8), 3324. doi: https://doi.org/10.3390/su12083324
García, F., Guijarro, F., Oliver, J., y Tamoši
¯
unien
˙
e, R. (2018). Hybrid fuzzy neuralnetwork to predict
price direction in the German DAX-30 index. Technological and Economic Development of
Economy, 24(6), 2161–2178. doi: https://doi.org/10.3846/tede.2018.6394
Göçken, M., Özçalıcı, M., Boru, A., y Dosdoğru, A. T. (2016). Integrating metaheuristics and Artifi-
cial Neural Networks for improved stock price prediction. Expert Systems with Applications,
44, 320–331. doi: https://doi.org/10.1016/j.eswa.2015.09.029
Hu, H., Tang, L., Zhang, S., y Wang, H. (2018). Predicting the direction of stock markets using
optimized neural networks with Google Trends. Neurocomputing, 285, 188–195. doi:
https://doi.org/10.1016/ j.neucom.2018.01.038
Huang, C., Yang, D., y Chuang, Y. (2008). Application of wrapper approach and composite
classifier to the stock trend prediction. Expert Systems with Applications, 34(4), 2870–
2878. doi: https://doi.org/10.1016/j.eswa.2007.05.035
Kara, Y., Boyacioglu, M. A., y Ömer Kaan Baykan. (2011). Predicting direction of stock price index
movement using artificial neural networks and support vector machines: The sample
of the Istanbul Stock Exchange. Expert Systems with Applications, 38(5), 5311–5319. doi:
https://doi.org/10.1016/ j.eswa.2010.10.027
Kim, K.-j. (2003). Financial time series forecasting using support vector machines. Neurocom-
puting, 55(1-2), 307–319. doi: https://doi.org/10.1016/s0925-2312(03)00372-2
Kim, K.-j., y Han, I. (2000). Genetic algorithms approach to feature discretization in artificial
neural networks for the prediction of stock price index. Expert Systems with Applications,
19(2), 125–132. doi: https://doi.org/10.1016/s0957-4174(00)00027-0
Kirkpatrick II, C. D., y Dahlquist, J. A. (2010). Technical analysis: the complete resource for
financial market technicians. FT press.
Krauss, C., Do, X. A., y Huck, N. (2017). Deep neural networks, gradient-boosted trees, random
forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research,
259(2), 689–702. doi: https://doi.org/10.1016/j.ejor.2016.10.031
Lee, M.-C. (2009). Using support vector machine with a hybrid feature selection method to
the stock trend prediction. Expert Systems with Applications, 36(8), 10896–10904. doi:
https://doi.org/10.1016/ j.eswa.2009.02.038
Leung, M. T., Daouk, H., y Chen, A.-S. (2000). Forecasting stock indices: a comparison of
classification and level estimation models. International Journal of Forecasting, 16(2),
173–190. doi: https://doi.org/10.1016/s0169-2070(99)00048-5
Li, D., Li, Z., y Li, R. (2017). Automate the identification of technical patterns: a k-
nearest-neighbour model approach. Applied Economics, 50(17), 1978–1991. doi:
https://doi.org/10.1080/00036846.2017.1383596
Liaw, A., y Wiener, M. (2002). Classification and regression by randomforest. R News, 2(3), 18–22.
Nguyen, T. H., Shirai, K., y Velcin, J. (2015). Sentiment analysis on social media for stock
movement prediction. Expert Systems with Applications, 42(24), 9603–9611. doi:
https://doi.org/10.1016/ j.eswa.2015.07.052
Ni, L.-P., Ni, Z.-W., y Gao, Y.-Z. (2011). Stock trend prediction based on fractal feature selection
and support vector machine. Expert Systems with Applications, 38(5), 5569–5576. doi:
https://doi.org/10.1016/ j.eswa.2010.10.079
Oppel, S., Meirinho, A., Ramírez, I., Gardner, B., O’Connell, A. F., Miller, P. I., y Louzao,
M. (2012). Comparison of five modelling techniques to predict the spatial dis-
Roberto Cervelló-Royo and Francisco Guijarro 48