Finance, Markets and Valuation Vol. 6, Num. 1 (Enero-Junio 2020), 85–98
Ichihashi, H. (1990). Learning control system by a simplified fuzzy reasoning model. Proceedings
of IPMU’90, 417–419.
Ishibuchi, H., Nozaki, K., Tanaka, H., Hosaka, Y., y Matsuda, M. (1994). Empirical study on
learning in fuzzy systems by rice taste analysis. Fuzzy Sets and Systems, 64(2), 129–144.
doi: https://doi.org/10.1016/0165-0114(94)90329-8
Jang, J.-S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on
Systems, Man, and Cybernetics, 23(3), 665–685. doi: https://doi.org/10.1109/21.256541
Kasabov, N., y Song, Q. (2002). DENFIS: dynamic evolving neural-fuzzy inference system and its
application for time-series prediction. IEEE Transactions on Fuzzy Systems, 10(2), 144–154.
doi: https://doi.org/10.1109/91.995117
Kim, J., y Kasabov, N. (1999). HyFIS: adaptive neuro-fuzzy inference systems and their
application to nonlinear dynamical systems. Neural Networks, 12(9), 1301–1319. doi:
https://doi.org/10.1016/s0893-6080(99)00067-2
Kristjanpoller, W., y Minutolo, M. C. (2015). Gold price volatility: A forecasting approach using
the artificial neural network–GARCH model. Expert Systems with Applications, 42(20),
7245–7251. doi: https://doi.org/10.1016/j.eswa.2015.04.058
Kuo, R., y Xue, K. (1999). Fuzzy neural networks with application to sales forecasting. Fuzzy Sets
and Systems, 108(2), 123–143. doi: https://doi.org/10.1016/s0165-0114(97)00326-6
Liu, P. (2016). Special issue “intuitionistic fuzzy theory and its application in economy, tech-
nology and management”. Technological and Economic Development of Economy, 22(3),
327–335. doi: https://doi.org/10.3846/20294913.2016.1185047
Mamdani, E. H., y Assilian, S. (1993). An experiment in linguistic synthesis with a fuzzy logic
controller. En Readings in fuzzy sets for intelligent systems (pp. 283–289). Else vier.
Mirbagheri, M., y Tagiev, N. (2011). Analyzing economic structure and comparing the re-
sults of the predicted economic growth based on solow, fuzzy-logic and neural-fuzzy
models. Technological and Economic Development of Economy, 17(1), 101–115. doi:
https://doi.org/10.3846/13928619.2011.554201
Nair, B. B., Dharini, N. M., y Mohandas, V. (2010). A stock market trend prediction sys-
tem using a hybrid decision tree-neuro-fuzzy system. En 2010 international conferen-
ce on advances in recent technologies in communication and computing. IEEE. doi:
https://doi.org/10.1109/artcom.2010.75
Nauck, D., y Kruse, R. (s.f.). A fuzzy neural network learning fuzzy control rules and membership
functions by fuzzy error backpropagation. En IEEE international conference on neural
networks. IEEE. doi: https://doi.org/10.1109/icnn.1993.298698
Roh, T. H. (2007). Forecasting the volatility of stock price index. Expert Systems with Applications,
33(4), 916–922. doi: https://doi.org/10.1016/j.eswa.2006.08.001
Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6), 386.
Rumelhart, D. E., Hinton, G. E., y Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533–536. doi: https://doi.org/10.1038/323533a0
Sugeno, M., y Kang, G. (1988). Structure identification of fuzzy model. Fuzzy Sets and Systems,
28(1), 15–33. doi: https://doi.org/10.1016/0165-0114(88)90113-3
Takagi, T., y Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling
and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(1), 116–132. doi:
https://doi.org/10.1109/tsmc.1985.6313399
Wang, L.-X., y Mendel, J. (1992). Generating fuzzy rules by learning from exam-
Javier Oliver Muncharaz 97