Finance, Markets and Valuation Vol. 6, Num. 2 (July-December 2020), 27–54
Jiang, F., Tong, G., & Song, G. (2017). Technical analysis profitability without data snooping bias:
Evidence from chinese stock market.
International Review of Finance
,
19
(1), 191–206. doi:
https://doi.org/10.1111/irfi.12161
Jin, X., Shen, D., & Zhang, W. (2016). Has microblogging changed stock market behavior?
evidence from china.
Physica A: Statistical Mechanics and its Applications
,
452
, 151–156.
doi: https://doi.org/10.1016/j.physa.2016.02.052
Kempf, A., & Ostho, P. (2007). The eect of socially responsible investing on
portfolio performance.
European Financial Management
,
13
(5), 908–922. doi:
https://doi.org/10.1111/j.1468-036x.2007.00402.x
Khademalomoom, S., & Narayan, P. K. (2019). Intraday eects of the currency mar-
ket.
Journal of International Financial Markets, Institutions and Money
,
58
, 65–77. doi:
https://doi.org/10.1016/j.intfin.2018.09.008
Kim, S., Lee, H., Ko, H., Jeong, S., Byun, H., & Oh, K. (2018). Pattern matching trading sys-
tem based on the dynamic time warping algorithm.
Sustainability
,
10
(12), 4641. doi:
https://doi.org/10.3390/su10124641
Kim, Y., Ahn, W., Oh, K. J., & Enke, D. (2017). An intelligent hybrid trading system for discovering
trading rules for the futures market using rough sets and genetic algorithms.
Applied So
Computing, 55, 127–140. doi: https://doi.org/10.1016/j.asoc.2017.02.006
Knoll, J., Stübinger, J., & Grottke, M. (2018). Exploiting social media with higher-order factoriza-
tion machines: statistical arbitrage on high-frequency data of the s&p 500. Quantitative
Finance, 19(4), 571–585. doi: https://doi.org/10.1080/14697688.2018.1521002
Ko, B., Song, J. W., & Chang, W. (2018). Crash forecasting in the korean stock market based on
the log-periodic structure and pattern recognition.
Physica A: Statistical Mechanics and
its Applications, 492, 308–323. doi: https://doi.org/10.1016/j.physa.2017.09.074
Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random
forests: Statistical arbitrage on the s&p 500.
European Journal of Operational Research
,
259(2), 689–702. doi: https://doi.org/10.1016/j.ejor.2016.10.031
Kumar, D., Meghwani, S. S., & Thakur, M. (2016). Proximal support vector machine based hybrid
prediction models for trend forecasting in financial markets.
Journal of Computational
Science, 17, 1–13. doi: https://doi.org/10.1016/j.jocs.2016.07.006
Lam, Dong, & Yu. (2019). Value premium and technical analysis: Evidence from the china stock
market. Economies, 7(3), 92. doi: https://doi.org/10.3390/economies7030092
Leung, T., & Zhou, Y. (2019). Optimal dynamic futures portfolio in a regime-switching mar-
ket framework.
International Journal of Financial Engineering
,
06
(04), 1950034. doi:
https://doi.org/10.1142/s2424786319500348
Li, C., Xu, Y., Yu, X., Ryan, C., & Huang, T. (2017). Risk-averse energy trading in multienergy micro-
grids: A two-stage stochastic game approach.
IEEE Transactions on Industrial Informatics
,
13(5), 2620–2630. doi: https://doi.org/10.1109/tii.2017.2739339
Li, X., Xie, H., Wang, R., Cai, Y., Cao, J., Wang, F., ... Deng, X. (2014). Empirical analysis: stock
market prediction via extreme learning machine.
Neural Computing and Applications
,
27(1), 67–78. doi: https://doi.org/10.1007/s00521-014-1550-z
Liu, Z., & Wang, S. (2017). Decoding chinese stock market returns: Three-state
hidden semi-markov model.
Pacific-Basin Finance Journal
,
44
, 127–149. doi:
https://doi.org/10.1016/j.pacfin.2017.06.007
Maciel, L. (2018). Technical analysis based on high and low stock prices forecasts: evidence for
brazil using a fractionally cointegrated VAR model.
Empirical Economics
,
58
(4), 1513–1540.
Javier Oliver-Muncharaz and Fernando García 50