Finance, Markets and Valuation Vol. 6, Num. 2 (Julio-Diciembre 2020), 137–148
https://doi.org/10.2139/ssrn.3612487
Ahn, W., Lee, H. S., Ryou, H., & Oh, K. J. (2020). Asset allocation model for a robo-advisor using
the financial market instability index and genetic algorithms.
Sustainability
,
12
(3), 849.
doi: https://doi.org/10.3390/su12030849
Arribas, I., Espinós-Vañó, M. D., García, F., & Oliver, J. (2019). Defining socially responsible
companies according to retail investors’ preferences.
Entrepreneurship and Sustainability
Issues, 7(2), 1641–1653. doi: https://doi.org/10.9770/jesi.2019.7.2(59)
Awan, F. M., Minerva, R., & Crespi, N. (2020). Improving road traic forecasting using air pollution
and atmospheric data: Experiments based on LSTM recurrent neural networks.
Sensors
,
20(13), 3749. doi: https://doi.org/10.3390/s20133749
Barkoulas, J. T., & Baum, C. F. (1996). Long-term dependence in stock returns.
Economics
Letters, 53(3), 253–259. doi: https://doi.org/10.1016/s0165-1765(96)00935-4
Baughman, M., Haas, C., Wolski, R., Foster, I., & Chard, K. (2018). Predicting amazon spot prices
with LSTM networks. In
Proceedings of the 9th workshop on scientific cloud computing.
ACM. doi: https://doi.org/10.1145/3217880.3217881
Box, G. E., Jenkins, G. M., & Reinsel, G. (1970).
Time series analysis: forecasting and control
holden-day san francisco. Holden Day.
Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill.
Chen, W., Zhang, H., Mehlawat, M.K., &Jia, L. (2021). Mean–varianceportfolio optimization using
machine learning-based stock price prediction.
Applied So Computing
,
100
, 106943. doi:
https://doi.org/10.1016/j.asoc.2020.106943
Chen, Y., Wei, Z., & Huang, X. (2018). Incorporating corporation relationship via graph
convolutional neural networks for stock price prediction. In
Proceedings of the 27th
ACM international conference on information and knowledge management.
ACM. doi:
https://doi.org/10.1145/3269206.3269269
Choi, E., Schuetz, A., Stewart, W. F., & Sun, J. (2016). Using recurrent neural network models
for early detection of heart failure onset.
Journal of the American Medical Informatics
Association, 24(2), 361–370. doi: https://doi.org/10.1093/jamia/ocw112
Ciaburro, G., & Venkateswaran, B. (2017).
Neural networks with r: Smart models using cnn, rnn,
deep learning, and artificial intelligence principles. Packt Publishing Ltd.
da Silva, I. N., Spatti, D. H., Flauzino, R. A., Liboni, L. H. B., & dos Reis Alves, S. F. (2016). Forecast of
stock market trends using recurrent networks. In
Artificial neural networks
(pp. 221–227).
Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-43162-8_13
Datta, D., David, P. E., Mittal, D., & Jain, A. (2020). Neural machine translation using recurrent
neural network.
International Journal of Engineering and Advanced Technology
,
9
(4),
1395–1400.
Espinós-Vañó, M. D., García, F., & Oliver, J. (2018). The ethical index FTSE4good IBEX as an
alternative for passive portfolio strategies in spain.
Finance, Markets and Valuation
,
4
(1),
85–93. doi: https://doi.org/10.46503/mukb2397
Gao, J., Zhang, H., Lu, P., & Wang, Z. (2019). An eective LSTM recurrent network to detect
arrhythmia on imbalanced ECG dataset.
Journal of Healthcare Engineering
,
2019
, 1–10.
doi: https://doi.org/10.1155/2019/6320651
García, F., González-Bueno, J., Oliver, J., & Tamoši
¯
unien
˙
e, R. (2019). A credibilistic mean-
semivariance-per portfolio selection model for latin america.
Journal of Business Eco-
nomics and Management
,
20
(2), 225–243. doi: https://doi.org/10.3846/jbem.2019.8317
García, F., González-Bueno, J. A., & Oliver, J. (2015). Mean-variance investment strategy applied
Javier Oliver Muncharaz 146